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The power conversion efficiency (PCE) for donor–acceptor
bulk-heterojunction  organic  solar  cells  (OSCs)  has  reached
~20%[1–3],  approaching  that  for  inorganic  solar  cells,  due  to
the  development  of  key  photoactive  materials[4–14].  The
short-circuit  current  density  (Jsc)  and  the  fill  factor  (FF)  for
state-of-the-art  OSCs  are  already  close  to  the  thermodynam-
ic  upper  limit  predicted  by  Shockley-Queisser  theory[15],  but
the  open-circuit  voltage  (Voc)  is  low,  limiting  the  overall  per-
formance of OSCs.

Low Voc can  be  ascribed  to  the  high  radiative  (Vr)  and
non-radiative (Vnr) voltage losses associated with the decay of
photogenerated  charge  carriers[16].  Thus,  understanding  the
mechanism of charge carrier decay dynamics in OSCs is the fo-
cus  for  device  physicists.  In  2009,  Vandewal et  al. analyzed
the  energetics  of  excited  states  in  polymer-fullerene  solar
cells and revealed that the decay of charge carriers in OSCs oc-
curred via the  charge transfer  (CT)  states  formed at  the  poly-
mer-fullerene  interface[17].  Therefore,  the  high  voltage  loss
was associated with the undesired electronic properties of CT
state.  Later,  Vandewal et  al. demonstrated  that  the  key  para-
meters  determining  the  voltage  loss  included  the  energy  of
CT state  (Ect),  the reorganization energy (λ)  of  organic  photo-
voltaic  materials,  and  the  absorption  oscillator  strength  (fosc)
of CT state[18].

Owing  to  the  existence  of  CT  states  with  energy  lower
than the singlet  (S1)  state of  the pristine photovoltaic  materi-
als,  the  absorption  tail  of  OSCs  extends  into  the  long
wavelength  region.  This  leads  to  a  very  high  saturation  cur-
rent[19],  yielding  high Vr.  Reducing  the  energy  difference
between the CT state and the S1 state (ΔEct) is an effective ap-
proach  to  reduce Vr

[19].  However,  the  reduced  ΔEct often  led
to  reduced  exciton  dissociation  rate  and  limited  device
quantum efficiency[20].  Reducing the density of  CT state (Nctc)
can  also  effectively  reduce Vr

[21].  The  reduced Nctc resulted  in
deteriorated transport properties of charge carriers, thus limit-
ing  FF.  High Vr was  believed  to  be  an  intrinsic  problem  for
OSCs[22].

In  non-fullerene  solar  cells,  high  quantum  efficiency
could be obtained by using donor–acceptor blends with very
low ΔEct or  low Nctc

[23].  Therefore,  negligible Vr could be real-
ized,  and  the  major  limit  for Voc is Vnr,  which  is  associated
with  low  external  quantum  efficiency  of  electroluminescence

(EQEEL) for CT state[24], since 

Vnr =
kT
q ln ( 

EQEEL
) ,

where k is Boltzmann constant, q is elementary charge, and T
is temperature. EQEEL is determined by following formula[25]: 

EQEEL =
kr

kr + knr
,

where kr and knr are  the  radiative  and  non-radiative  decay
rate  constant,  respectively.  Thus,  very  high knr for  CT  state  in
organic  blends  leads  to  low  EQEEL.  Low  EQEEL (<1  ×  10–5)  for
organic  solar  cells  yields  high Vnr (>0.3  V)[26].  Accordingly,
more efforts have been spent on the manipulation of the de-
cay dynamics of CT state in recent years to reduce knr and in-
crease EQEEL.  In 2017, Bunduhn et al.  discovered that high knr

of OSCs originated from strong vibrational  coupling between
CT  state  and  the  ground  state[27].  The  strong  coupling  resul-
ted  from  high-frequency  carbon  vibration  of  organic  mo-
lecules. Later, Ullbrich et al.  reported that increasing Ect could
reduce  vibrational  coupling  and  reduce knr

[28]. Vnr was  very
low in OSCs with high Ect.  However,  the use of high-bandgap
material  for  high Ect led  to  reduced  spectral  coverage  of  the
solar cell, and thus reducing Jsc and limiting overall device per-
formance. Increasing the spacing between donor and accept-
or molecules could also reduce knr and reduce Vnr, thus improv-
ing overall device performance[29].  Furthermore, Azzouzi et al.
extended  the  model  describing  non-radiative  decay  rate  of
CT state[30],  and demonstrated that  reducing λ and fosc,  or  in-
creasing static dipole moment of CT state, could reduce knr.

Qian et al. indicated that increasing the degree of hybridiz-
ation  between  CT  state  and  S1 state  could  effectively  in-
crease EQEEL

[31].  The increase in  EQEEL was ascribed to the in-
tensity-borrowing mechanism of the excited states. Later, Eis-
ner et  al.  built  a  model  to  describe  the  impact  of  hybridiza-
tion  on  the  dynamic  process  of  excited  states[32].  They  found
that Vnr could  be  reduced,  while  increasing Vr.  It  is  still  un-
clear  whether  the  hybridization  could  improve overall  device
performance.

Based on the improved understanding on Voc loss mechan-
ism,  many  strategies,  such  as  ternary  strategy[33],  mixed-
solvent  strategy[23],  and  thin-film  deposition  strategy[34],  as
well  as  material  design  strategies  (e.g.  side-chain  engineer-
ing[35],  double-cable structure[36])  have been developed to re-
duce voltage loss. Now the lowest voltage loss is below 0.4 V[37].
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OSC  performance  will  be  further  improved[38, 39],  thus  paving
the road to real commercialization.
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